自然数e的值(自然数e的值)

Ⅱ﹏囧
阅读

自然数e的值(自然数e的值)

您好,蔡蔡就为大家解答关于自然数e的值,自然数e的值相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、这个写得非常详细,希望能帮到你点什么某个数学家发明出来并受到人们的提倡,之后广泛运用。

2、可以说就是这么来的。

3、愿能帮到你!!!额好高深的问题。

4、你要弄明白这个干嘛呢。

5、e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:  当n->∞时,(1+1/n)^n的极限。

6、  注:x^y表示x的y次方。

7、  随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。

8、但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。

9、  e在科学技术中用得非常多,一般不使用以10为底数的对数。

10、以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

11、  这里的e是一个数的代表符号,而我们要说的,便是e的故事。

12、这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。

13、这个e究竟是何方神圣呢?  在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。

14、教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。

15、课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。

16、不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?  这就要从古早时候说起了。

17、至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。

18、那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。

19、  我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。

20、但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。

21、有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。

22、所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。

23、印度卡罗不懂的可追问。

本文就讲到这里,希望大家会喜欢。

阅读
本文由用户上传,如有侵权请联系删除!

撰写回复
更多知识